Tetrahedron Letters, Vol. 34, No. 37, pp. 5855-5858, 1993 0040-4039/93 $6.00 + .00
Printed in Great Britain Pergamon Press Lid

The Operation of H-Atom and TMS-Group Transfer Processes in the
Photochemistry of Silylamidoalkyl- and Silylalkyl-Ketones and -Phthalimides

Yean Jang Lee, Chao Pin Lee, Yoon Tag Jeon, Patrick S. Mariano*
Department of Chemistry and Biochemistry
University of Maryland, College Park, MD 20742 USA

Ung Chan Yoon,* Dong Uk Kim, Jack C. Kim, Jong Gun Lee
Department of Chemistry, College of Natural Sciences
Pusan National University, Pusan 609-735, KOREA

Abstract. Photoreactions of silylamidoalkyl- and silylalkyl-ketones and N-silylethylphthalimide operate by
competitive H-atom and TMS-group transfer routes and whose relative efficiencies are influenced by side-chain and
carbonyl substituents, and solvent.

Two maijor reaction pathways, the Norrish Type | and Type Il processes, characterize the excited state chemistry
of carbonyl compounds.! The Type Il reaction, involving predominantly y-H atom abstraction, typically occurs from both
singlet and triplet excited carbonyls having n-x* (i.e. oxy-radical like) electronic configurations. 1,4-Biradicals generated
in this way undergo cyclization to yield cycloalkanols and/or fragmentation to give enols and alkenes.

Studies of phthalimides? and amino-ketones3 have shown that Type Il photoreactions can also be promoted by
charge transfer (CT) between donors and either n-x* or n-n"carbonyl acceptors. Our recent efforts have focused on
the SET-photochemistry of silicon-substituted donors.4 In this communication we describe results of continuing
investigations in this area in which we have probed the photochemistry of several trimethylsilyl-methylamido (1-4) and
-alkyl (5-6) ketones and the N-silylethylphthalimide 21 and through which we have uncovered novel Type ll-like
chemistry, involving either transfer or loss of a TMS group.
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1 phenyl NCO,Bn 8 phenyl TMS CO2Bn H
2 2-naphthyi NCO2Bn ] phenyl! H CO2Bn H
3 1-clohexenyl NCO,Bn 10  phenyl H CO,Bn TMS
4 9-phenanthrenyl NCO,Bn 11 2-naphthyl TMS CO,Bn H
5 phenyl CHz 12 2-naphthyl H CO.Bn H
6 2-naphthyi CHy 13 2-naphthyl H C0Bn TMS
7 4-cyanophenyl CH, 14 1-cyclohexenyl TMS CO5Bn H
15 9-phenanthrenyl TMS COMe H
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Initial indications of interesting chemistry came from our studies with ketones 1-4. Irradiation (A > 300 nm) of
silylamido-phenone 1 in MeCN leads to formation of a separable (silica) mixture of azetidines 8-10 (see Table 1) along
with PhCOMe (6%) and the carbamate 16 (6%). NMR analysis shows that azetidinol 9 is absent from the crude
photolysate and, thus, that 9 comes from 8 during chromatography. In addition, the naphthyl-analog 2 is transformed in

nearly equal efficiency by irradiation in MeCN to azetidines 11-13 (Table 1), 2-acetonaphthone (14%) and carbamate 16
(5%). Finally, the siloxyazetidines 14 and 15 are the major products from respective photoreactions of the
cyciohexenyl- and $-phenanthrenyl-ketones, 3 and 4.5 The above observations show that the major route followed in
the photorsactions of these silylamido-ketones involves TMS-group transfer to the carbony! oxygen followed by

diradical coupling.6
Table 1. Azetidine Products and Yields from Direct Irradiations of Silylamido-Ketones 1-4 in MeCN.
Starting Ketone Azetidines (Isolated Yield) ((NMR-Yield))&

8 (22%) ((29%)), 9 (13%), 10 (9%) ((18%))
11 (6%) ((37%)), 12 (15%), 13 (1%) ((5%))
14 (36%)

15 (ca. 50%)

& W N -

(® TH NMR analysis of crude photolysates from irradiations in CD3CN.

The TMS-propyl ketones 57 and 6 both undergo clean photoreactions (but with different efficiencies, 5 > 6) in
MeCN to produce the corresponding methylketones (ArCCMe) and vinylsilane (H2C=CHTMS) in near equal yields (80-
100%) along with the diketones (ArCOCH2CH2COAr, 10-19%). The photochemistry of the p-cyano analog 7 in MeCN
is a bit more complex, giving 4-CN-CgH4COCH3 (91%), H2C=CHTMS (92%) and (4-CN-CgH4COCH2)2 (1%) and the
cyclobutanol 17 (7%). Thus, in contrast to their silylamide analogs, the silylalkyl ketones react nearly exclusively by H-
atom migration pathways in MeCN.

Observations which connect the two disparate photochemical reactivity patterns have come from TH NMR
monitoring of the photoreactions of 5 and 7 in CD3CN and CD30H. Low conversion (ca. 5-20%) irradiation of both §
and 7 in CD3CN leads to formation of ArCOMe and H2C=CHTMS products in 1:1 ratios. However, irradiation of § in
CD30H again gives the ketone and vinylsilane, but this time in a 1.7:1 ratio. Also, photoreaction of the 4-cyano
compound 7 in CD30H gives methyl ketone and vinylsilane in a ratio of 1.8:1. The corresponding silyleno! ethers,
ArC(OTMS)=CH2, were not detected in the crude CD3OH photolysates despite the fact that they are stable under the
reaction conditions. Clearly, two pathways are followed in the excited reactions of § and 7 in CD30H, one involving H-
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atom migration to produce methyl ketone and vinyisilane in equal amounts and the other involving desilylation to give
the methyl ketone (and CHa=CHp presurnably) and no vinylsilane.

The generality of these observations is reflected in the photochemistry of the silylethylphthalimide 21.
Irradiation (A > 250 nm) of 21 in MeCN (ca. 1 mM) followed by silica gel chromatography leads to the knownB
benzazepindione 18 (68%). This substance (41%) along with the TMS-containing adduct 22 (7%) are formed when 21
is irradiated in acetone.
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While, precedence exists for formation of adduct 22 by acetone trapping of an ylid intermediate derived by H-
atom migration,? the mechanism(s) for production of benzazepindione 18 is less clear. Two limiting routes are
reasonable. One involves typical y-H-atom abstraction followed by diradical cyclization and amidol ring opening to give
the a-silylketone 23 (Scheme 1). Exposure of 23 to water then provides 18. Altematively, TMS-group migration to
oxygen in excited 21 would generate the tricyclic silyl ether 24, a substance which should rapidly transform to 1 with
water. This mechanistic issue has been clarified. Firstly, as originally observed by Kanaoka,B irradiation of N-
ethylphthalimide under conditions that promote efficient photoreaction of 21 leads to inefficient (<2%) formation of 18.
Secondly, NMR monitoring of the photoreaction of 21 demonstrates that the a-silylketone 2310 is formed in anhydrous
CD3CN. Quenching of this photolysate with D20 leads to generation of the a-CD,ND-d2-benzazepindione 19. On the
other hand, Irradiation of 21 in 50% D20-CD3CN gives the ND-d1-benzazepindione 20 exclusively. These results

shows that 21 gives 18 by a typical H-atom abstraction pathway in MeCN and by a silyl transfer or desilylation route in
the more polat/silophilic HoO-MeCN.

Scheme 1.
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This study has provided a preliminary view of the types of excited state reactions that are open to TMS-
substituted ketones and phthalimides and how they are governed by solvent and substituents. In summary,
photoreactions of the silylamido-ketones in MeCN appear to occur via CT-excited states in which intramolecular migration
of the TMS moiety is favored by the high silophilicity of the oxygen of the phenone radical anion in aprotic media. H-
Atom abstraction by the carbonyl n-n* excited state is the dominant process in silylalkyl ketone photochemistry occurting
in the less polar solvent MeCN. However, in the more polar MeOH, CT-interactions in the excited states (both n-x* and
n-x*) of these substances compete and lead to generation of diradicals by MeOH induced desilylation. Finally, CT-
interaction in the excited state of the phthalimide 21 enhances silyl transfer or desilylation depending on the silophilicity
(H20>MeCN) of the solvent. Inherent in this overview are questions about the mechanistic generalities and synthetic
implications of the chemistry, issues which future studies will address.
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